

الدرجة المكتسبة	الدرجة	السؤال
	13	الأول
	5	الثاني
	5	الثالث
	4	الرابع
	5	الخامس
	5	السادس
	3	السابع
	40	المجموع

الشعبة	الرقم الجامعي	اسم الطالبة

Answer all the following questions

Question1: [13 points] using $g = 9.8 \text{ m/s}^2$		
choose the correct answer		
1- How long does a bicycle with acceleration of 0.6 m/s^2 take to go from 4 to 10 m/s ?		
(a) <i>6.4s</i>	(c) <i>10s</i>	
(b) <i>15s</i>	(d) 26s	
2- What is the magnitude of the vector \vec{r} if $r_x = 3.5$ m and $r_y = 4$ m?		
(a) 37.2 m	(c) 5.32 m	
(b) -0.44 m	(d) 0.44 m	
3- What is the direction relative to the positive x-axis for the position vector:		
$\vec{r} = (6\mathrm{m})\hat{\imath} - (5\mathrm{m})\hat{\jmath}$		
(a) -40.8°	(c) 40.8°	
(b) -39.8°	(d) 49.1°	
4- Vectors \vec{C} and \vec{D} have magnitudes of 3 units and 4 units, respectively. What is the angle		

between the directions of \vec{C} and \vec{D} if $\vec{C} \cdot \vec{D}$ equals 12 ?

(a) 180°	(c) 45°
(b) 90°	(d) 0°

5- A child of mass 22.0 kg rides curved slide of height h = 2.00 m, the child starts from rest at the top. What his speed at the bottom, assuming no friction is present.

(a) 8.61 m/s	(c) 6.26 m/s
(b) 5.42 m/s	(d) 4.32 m/s

6- When a particle moves along the x axis according to the equation: $x = -2t^2 - 3t + 4$, its acceleration (a) is:

(a) Zero	(c) 2 m/s^2
(b) -4 m/s^2	(d) 3 m/s^2

7- The work done by a constant force $\vec{F} = -3\vec{i} + 2\vec{j}$ (N) acting on a particle that undergoes a displacement $\vec{s} = \vec{i} + 4\vec{j}$ (m) is...

(a) 0 J	(c) 5 J
---------	---------

(b) 14.8 J (d) 10 J

8- The speed of an automobile moving on a straight road is given in meters per second as a function of time (t) in seconds by the following equation: $v = 5 + 3t^3$

What is the acceleration of the automobile at t = 2 seconds?

(a)
$$12 \text{ m/s}^2$$
 (c) 18 m/s^2
(b) 36 m/s^2 (d) 24 m/s^2

9- A 600-kilogram sports car accelerates uniformly from rest, reaching a speed of 30 meters per second in 6 seconds. During the 6 seconds, the car has traveled a distance of:

10- At t = 1s, a particle moving in xy plane with constant acceleration has velocity of $\vec{v} = 3\hat{\iota} - 4\hat{j}$ m/s. But at t = 4 s, the particle's velocity is $\vec{v} = 9\hat{\iota} + 5\hat{j}$ m/s. Find the acceleration of the particle.(a=?)

(d) 90 m

(a)	$4\hat{i} + 5\hat{j} \text{ m/s}^2$	(c)	$2\hat{i} + 3\hat{j} \text{ m/s}^2$
(b)	$2\hat{i} - 4\hat{j} m/s^2$	(d)	$4\mathbf{\hat{i}} - 7\mathbf{\hat{j}} \text{ m/s}^2$

11- A charged particle (q = -8.0 mC), which moves in a region where the only force acting on the particle is an electric force, is released from rest at point A. At point B the kinetic energy of the particle is equal to 4.8 J. What is the electric potential difference $V_B - V_A$?

(a)
$$-0.60 \text{ kV}$$
 (c) $+0.80 \text{ kV}$
(b) $+0.60 \text{ kV}$ (d) -0.80 kV

12-Two positive charges q_1 and q_2 are 50 cm apart, if the charge q_2 is 40 μ C and the two charges are repelled one from the other by a force of magnitude 2.0 N. Determine the magnitude of the smaller charge q_1 .

(a)
$$1.4 \,\mu\text{C}$$
 (c) $2.0 \,\mu\text{C}$

(b) $17 \ \mu C$ (d) $3.3 \ \mu C$

13- Electric charge is always conserved in an isolated system.

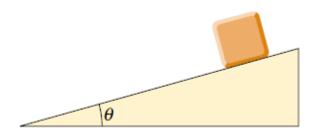
- (a) False (c) None of these
- (b) True

Question 2: [5 points]

A single constant force $\vec{F} = (3\vec{i} + 5\vec{j})$ N acts on a 4.00-kg particle. (a) Calculate the work done by this force if the particle moves from the origin to the point having the vector position $\vec{r} = (2\vec{i} - 3\vec{j})$ m. Does this result depend on the path? Explain.

(b) What is the speed of the particle at (r) if its speed at the origin was 4.00 m/s?

(c) What is the change in the potential energy?


<u>Question 3:</u> [5 points], $g = 9.8 \text{ m/s}^2$

A 3.00-kg block starts from rest at the top of a 30.00 incline and slides a distance of 2.00 m down the incline in 1.50 s.

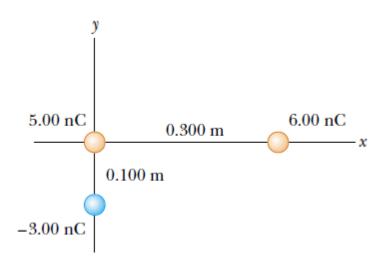
(a) Draw the free-body diagram of the block?

(b) Find the magnitude of the acceleration of the block? (a=?)

(c) Find the speed of the block after it has slid 2.00 m? (v_f =?)

Question 4: (4 points)

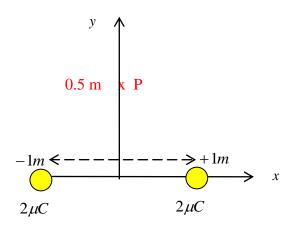
A particle moving in the xy plane undergoes a displacement $\vec{s} = (2\vec{i} + 3\vec{j})$ m while a constant force $\vec{F} = (5\vec{i} + 2\vec{j})$ N acts on the particle.


- (a) Calculate the magnitude of the **displacement** and that of the **force**.
- (b) Calculate the work done by \vec{F} .
- (c) Calculate the angle between \vec{F} and \vec{s} .

Question 5: (5 points), $k_e = 8.99 \times 10^9 \text{ N.m}^2/\text{C}^2$

Three point charges are arranged as shown in Figure below.

(a) Find the vector electric field that the 6.00-nC and -3.00-nC charges together create at the origin.


(b) Find the vector force on the 5.00-nC charge.

Question 6: (5 points), $k_e = 8.99 \times 109 \text{ N.m}^2/\text{C}^2$

Two point charges each of magnitude 2.00 μ C are located on the x axis. One is at x=+1.00 m, and the other is at x = -1.00 m.

- (a) Determine the electric potential the y axis at y = 0.500 m.
- (b) Calculate the change in electric potential energy of the system as a third charge of -3.00 μ C is brought from infinity far away to a position on the y axis at y = 0.500 m.

Exercise 7: (3 points)

Consider the displacement vector $\vec{A} = (3\vec{i} + 2\vec{j})$ m, $\vec{B} = (\vec{i} + 3\vec{j})$ m, and $\vec{C} = (-2\vec{i} + 5\vec{j})$ m. Use the component method to:

- (a) Determine the magnitude of the vector $\vec{D} = \vec{A} + \vec{B} + \vec{C}$.
- (b) Determine the direction of the vector $\vec{D}=\vec{A}+\vec{B}+\vec{C}$.